7.1 INTRODUCTION (1)

Post-transcriptional gene regulation involves controlling gene expression after is transcribed from DNA but before it is translated into protein, affecting mRNA stability of the stability localisation, and translation efficiency. Although we have already discussed one component post transcriptional regulation in previous chapter in the topic, small regulatory RNA-med regulation, yet there are several other key mechanisms which may not be directly re to epigenetic modifications discussed previously. Hence, we will discuss those remain post-transcriptional regulations here in this chapter. In particular our focus will be on R splicing, RNA stability, RNA editing and RNA surveillance. Among the common type post-transcriptional mechanisms are include RNA splicing, RNA editing, RNA stabi regulation and control of RNA localisation. RNA splicing (the term was already introdu in molecular biology, chapter transcription), where alternative splicing generates multiple splicing generates mul mRNA variants from a single gene, increasing protein diversity. For example, the Drosoph Dscam gene can produce thousands of protein isoforms through alternative splicing. mR stability is regulated by elements like AU-rich regions in the 3' UTR, influencing mR degradation rates; for instance, the rapid degradation of cytokine mRNAs allows in control of inflammatory responses. Yet another component of RNA stability is the regulation through regulatory RNAs such as the action of microRNAs (miRNAs), like miR-21, who will be action of microRNAs (miRNAs). downregulates tumor suppressor genes in cancer. mRNA localisation ensures proteins synthesized where needed, such as β-actin mRNA localisation to the leading edge of fibroble for cell motility and hence also controls the spatial regulation of gene expression. RNA edition such as the A-to-I editing in the glutamate receptor gene, alters RNA sequences, impact mRNA stability and protein function. Additionally, mRNA surveillance mechanisms previous the production of faulty proteins by degrading mRNAs with premature stop codons inability to stop translation. Post-transcriptional regulation of gene expression plays a critical role in maintaining cellular homeostasis, responding to environmental changes, and ensur proper development and function in organisms. These processes are essential for the pred control of gene expression and protein production, and their dysregulation can lead to numerous diseases and metabolic disorders. In cancer, aberrant alternative splicing can produce oncoget protein variants or result in the loss of tumor suppressor functions, with mutations in splici factors being common in several cancers. Alterations in RNA stability and turnover can a lead to the overexpression or under expression of critical genes, and dysregulated microRN (miRNAs) frequently influence tumor growth. In neurodegenerative diseases, mis regulation of RNA splicing and editing is implicated in conditions like amyotrophic lateral sclero (ALS) and frontotemporal dementia, where mutations in RNA-binding proteins can call widespread enlicing defeat and and an analysis of the state of t widespread splicing defects. RNA surveillance mechanisms, such as nonsense-mediated decountry and the surveillance mechanisms, such as nonsense-mediated decountry. (NMD), are vital for eliminating faulty mRNAs; failures in these pathways can result in to protein accumulation, contributing to diseases like Huntington's and Alzheimer's. In metabolic disorders, post-transcriptional regulation is crucial for metabolic control, with RNA editing of apolipoprotein B (Apo B) mRNA affecting lipid metabolism, and disruptions in RNA binding proteins and miRNAs linked to insulin resistance and diabetes. In this chapter we will discuss these well-established post-transcriptional regulatory mechanisms in greater detail.

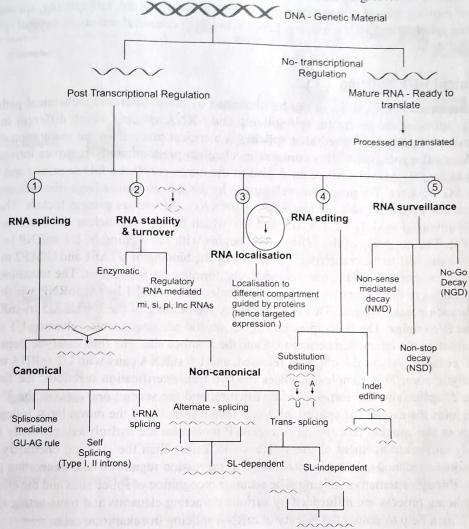


Fig. 7.1. General outline of various of post-transcriptional regulatory mechanisms.

7.2 RNA SPLICING ②

As we learnt in previous unit, during our discussion on transcription, that most of the RNA in eukaryotes is processed after its formation. One of the prominent features of RNA processing, especially for those RNAs which contain intervening sequences (introns) is called RNA splicing. The literaric meaning of splicing is to join two pieces of rope, film, etc. together at their ends in order to form one long piece. Likewise, the RNA with intervening sequence is first cut to remove those sequences (or introns) and join together into a final product called mature RNA. There are several mechanisms of RNA splicing known to us till date, some of which lead to a single final product from a single precursor or unprocessed RNA, is called simple or canonical splicing, while the another one called, non-canonical splicing, is less common and

88

does not apply to all RNAs. Here, more than one precursor RNAs may be involved for does not apply to all KNAS. Here, more than different genes (trans-splicing) or there can be single precursor RNA which can splice in different genes (trans-splicing) or there can be single precursor RNA which can splice in the splice in th than one way and lead to different transcripts from same pre-mRNA called alternate spin The canonical RNA splicing also, may follow various paths depending upon types of RN types of introns) present. Among the major canonical pathways are, self-splicing, splison mediated splicing, and t-RNA splicing. Lets discuss, both canonical and non-canonical splicing. in greater detail.